笔趣屋

手机浏览器扫描二维码访问

第三百九十八章 遇到难题那就跑出灵感吧(第1页)

接下来在普林斯顿大学的几天时间里,秦克比在国内时还要忙碌。

他白天坚持去听整场的报告会,一方面攒点学术积分,另一方面也是学习国际数学界最新的学术成果,完善自身的数学理论体系。

而报告会结束后,秦克连晚宴也不参加了,马不停蹄便返回旅馆里,匆匆扒几口旅馆准备的饭菜,便埋头钻研起几个素数难题。

宁青筠证明周氏猜想的思路确实给了秦克无穷的暇想空间,他忽然发现,“几何数论匹配逼近法”虽然比“函数变换式超几何系统”和“群论函数方程法”要简单点,但在处理一些难度没那么高的素数问题方面确实更具灵活性与创造力。

它就像一把多功能军刀,只要在几何、代数、逼近、匹配四种数学方法之间反复变换,就能组合出不同的用法来。

《修罗武神》

秦克将周氏猜想的证明交给了宁青筠,自己则磨刀霍霍,将目标锁定在其他难度与周氏猜想相彷或者更低一点的素数猜想上。

当然,所谓的“更低”,只是相对的,素数原本就是数学上比较难的子科目,与它有关的猜想基本上都是世界难题。

不过有关素数的猜想多不胜数,秦克必须有针对性地筛选目标来下手——许多素数猜想之所以没人证明,是因为它本身的意义并不大,难度又高,谁会浪费时间去证明?

秦克自然也没兴趣管那些名气小得可怜的素数猜想。

他首先留意到两个命题:“梅森素数是否有无限多个”,以及“斐波那契数列是否有无穷个素数”。

两个命题不算是猜想,因为没人能给出合理的猜测,但意义很大,足以媲美孪生素数猜想,不过非常难,秦克如果想将它们斩于马下,首先要提出自己的猜测,并将之证明。

此外还有几个备选目标,比如新梅森素数猜想,这是有关质数的猜想,对于任何奇自然数p,若以下其中两句叙述成立,剩下的一句就会成立:

1.p=(2^k)±1或p=(4^k)±3

2.(2^p)-1是质数(梅森质数)

3.[(2^p)+1]3是质数。

还有另一个比较有名的“克拉梅尔猜想”,它的数学表达式为:limn→∞sup(Pn+1-Pn)(logPn)^2=1,这里Pn代表第n个素数。

上述两个基本上是与周氏猜想的难度、意义在同一级别或者相近的。

此外还有“布罗卡尔猜想”,即“两个素数的平方之间至少有4个素数”;以及“杰波夫猜想”,即“在n^2和(n+1)^2之间一定有素数”,也是有关素数分布规律方面颇有名气的猜想。

秦克决定先从与周氏猜想方向最接近的“布罗卡尔猜想”和“杰波夫猜想”上入手。

事实证明他的选择是正确的,他反复拆解运用“几何数论匹配逼近法”,再加上一点“群论函数方程法”里面的梅林变换和傅里叶变换,再次将“布罗卡尔猜想”的问题化简为繁,转化为了代数几何问题,再通过线性变换……

一行行艰涩难懂的数学算式在他划动的笔尖下流淌而出,化为一把把利剑,斩向名为“布罗卡尔猜想”的小BOSS,一个个交错变化的数学符号,组合为一道道玄妙的真理光线,直透入“布罗卡尔猜想”的核心。

秦克只花了两个晚上,“布罗卡尔猜想”这个小BOSS便哀嚎着,化为无数的经验值,倒在秦克的笔下。

“搞定了!”秦克松了口气,脸露喜色。

攻克“布罗卡尔猜想”的基本思路与证明周氏猜想大同小异,在“几何数论匹配逼近法”这把锋利而多变的军刀面前,“布罗卡尔猜想”根本逃不过土崩瓦解的结局。

至于同一级别、而且攻略方法相似的“杰波夫猜想”,秦克有点懒得自己动手了。

到了第三天的早上,对应夏国时间的深夜,宁青筠发来消息,告诉秦克她已完成了周氏猜想的60%左右的证明过程,只是一些细节关键点方面,因为经验以及知识深度方面的原因,她始终未能攻克。

这已让秦克足够惊喜了,宁青筠在证明过程中表现出来的韧性与创造性思维都非常出色。对于难点,她能反复地用自己掌握的各种方法,进行无数次枯燥的尝试。好几个难点就是被她用看似笨拙、却又透出精巧的方法来解决的。

秦克觉得宁青筠在数学方面的才能更像是水,润物细无声,却能深入到每一处缝隙,以水滴石穿的韧性与耐心,化解掉许多强攻不下的问题。

这与秦克形成了非常好的互补,秦克向来是雷厉风行,走的是“快准狠”路线,直插问题核心,再抽丝剥茧般对余下部分进行补刀。

战无不克:“筠儿,周氏猜想接下来的证明就交给我吧。你看看我写的这个‘布罗卡尔猜想’证明过程,帮忙完善一下里面的细节,然后还有这份是有关证明‘杰波夫猜想’的思路与要点,它与‘布罗卡尔猜想’的证明大同小异,最难的几个变换关键点我都写出来了,‘杰波夫猜想’就交给你了,我希望你能100%地将它证明出来。”

这章没有结束,请点击下一页继续阅读!

小青竹要长高高:“嗯!我会努力的!”

看得出来,宁青筠的信心与干劲也在与日俱增。秦克轻轻一笑,嘴唇开合,“微光”迅速将唇语转化为文字:

战无不克:“努力归努力,不要熬夜,来,视频一下,我要检查你有没有黑眼圈。”

小青竹要长高高:“不要啦……我在宿舍里呢,穿着睡衣,燕菲和小惠她们也穿着睡衣……”

战无不克:“你这么一说我就更感兴趣了。”

小青竹要长高高:“(菜刀)(菜刀)秦小克,你对什么感兴趣来着?”

战无不克:“当然是对你穿睡衣的样子感兴趣了,难不成你以为我会对你的室友们感兴趣?她们加起来也不及你一半漂亮,你要相信我挑剔的眼光,看惯了璀璨夺目的宝石珍珠,怎会瞧得上路边的石头?”

我没名字吗?只知道喊我战略级!  魔界人的平淡日常  乃木坂的奇妙日常  大佬每天都在上热搜  被家暴致死,我靠弹幕杀疯了  CSGO:这个狙击手有亿点强!  废土崛起  雪落辰心  无限流的元宇宙  紫禁秋凉之夏冬春重生  凰鸾台  我,石上优,拳愿之王  作为卡兹好队友现住乔家  旧日音乐家  山海八荒录  美食供应商  恐女的我和美少女旅行日常  长生从负心开始  克拉夫特异态学笔记  无量宙之密钥  

热门小说推荐
只愿不负你深情

只愿不负你深情

只愿不负你深情简介emspemsp被丈夫背叛,被妹妹开车撞流产,被继母和父亲赶出家门  而这时,一个神秘男人突然出现,他给了我两个选项,一是让他们身败名裂,二是让他们破产。  我选择全都要!emspemspemsp海棠书屋(po18yuvip)提供...

我徒弟不可能是大魔王

我徒弟不可能是大魔王

我徒弟不可能是大魔王简介emspemsp关于我徒弟不可能是大魔王魔镜啊魔镜,未来修真界第一人是谁?是叶湛。等等,我先去杀了他。魔镜啊魔镜,叶湛被我打得生死不明,现在未来修真界第一人是谁?是叶湛。???魔镜啊魔镜,叶...

杀族弃少

杀族弃少

杀族弃少简介emspemsp关于杀族弃少一个可怕的物种,一个归来的强者,一个家族的湮灭,一个种族的兴起。萧寒从黑暗世界归来,只为调查十五年前的真相,却不经意间揭开了危及世界的阴谋。...

邪王缠宠:逆天二小姐

邪王缠宠:逆天二小姐

邪王缠宠逆天二小姐简介emspemsp关于邪王缠宠逆天二小姐前世被害惨死,才认清什么叫人心险恶。一朝重生,喜我者宠,害我者诛!再世为人,她王者归来,岂料惹上了邪魅嗜血的他。他明明杀伐决断,却偏偏就喜欢她首发po18nlpo1⒏υip...

三国之少年帝王

三国之少年帝王

三国之少年帝王简介emspemsp关于三国之少年帝王主角竟然重生三国最悲催的少年皇帝,刘辨,面对着即将被董卓废除帝位,还有被送毒酒弄死的结局,刘辨表示很悲催,刚好这时,刘辨绑定了少帝帝王系统,拥有逆袭的能力。...

韩娱之平凡之路

韩娱之平凡之路

韩娱之平凡之路简介emspemsp关于韩娱之平凡之路欢迎收藏作者新书通灵大明星普青版为了自己的妻子宁可与家族决裂但是终究还是性格温和的华人后裔主角李俊翰,为了弄清楚选择了放弃跟自己那么多年感情而去追寻自己生活的妻子的心态...

每日热搜小说推荐